Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 313
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(16): e2314990121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38593070

RESUMO

Langya virus (LayV) is a recently discovered henipavirus (HNV), isolated from febrile patients in China. HNV entry into host cells is mediated by the attachment (G) and fusion (F) glycoproteins which are the main targets of neutralizing antibodies. We show here that the LayV F and G glycoproteins promote membrane fusion with human, mouse, and hamster target cells using a different, yet unknown, receptor than Nipah virus (NiV) and Hendra virus (HeV) and that NiV- and HeV-elicited monoclonal and polyclonal antibodies do not cross-react with LayV F and G. We determined cryoelectron microscopy structures of LayV F, in the prefusion and postfusion states, and of LayV G, revealing their conformational landscape and distinct antigenicity relative to NiV and HeV. We computationally designed stabilized LayV G constructs and demonstrate the generalizability of an HNV F prefusion-stabilization strategy. Our data will support the development of vaccines and therapeutics against LayV and closely related HNVs.


Assuntos
Vírus Hendra , Infecções por Henipavirus , Henipavirus , Vírus Nipah , Humanos , Animais , Camundongos , Microscopia Crioeletrônica , Glicoproteínas , Internalização do Vírus
2.
J Virol ; 98(3): e0183823, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38426726

RESUMO

Nipah virus (NiV) is a highly lethal, zoonotic Henipavirus (HNV) that causes respiratory and neurological signs and symptoms in humans. Similar to other paramyxoviruses, HNVs mediate entry into host cells through the concerted actions of two surface glycoproteins: a receptor-binding protein (RBP) that mediates attachment and a fusion glycoprotein (F) that triggers fusion in an RBP-dependent manner. NiV uses ephrin-B2 (EFNB2) and ephrin-B3 (EFNB3) as entry receptors. Ghana virus (GhV), a novel HNV identified in a Ghanaian bat, uses EFNB2 but not EFNB3. In this study, we employ a structure-informed approach to identify receptor-interfacing residues and systematically introduce GhV-RBP residues into a NiV-RBP backbone to uncover the molecular determinants of EFNB3 usage. We reveal two regions that severely impair EFNB3 binding by NiV-RBP and EFNB3-mediated entry by NiV pseudotyped viral particles. Further analyses uncovered two-point mutations (NiVN557SGhV and NiVY581TGhV) pivotal for this phenotype. Moreover, we identify NiV interaction with Y120 of EFNB3 as important for the usage of this receptor. Beyond these EFNB3-related findings, we reveal two domains that restrict GhV binding of EFNB2, confirm the HNV-head as an immunodominant target for polyclonal and monoclonal antibodies, and describe putative epitopes for GhV- and NiV-specific monoclonal antibodies. Cumulatively, the work presented here generates useful reagents and tools that shed insight to residues important for NiV usage of EFNB3, reveal regions critical for GhV binding of EFNB2, and describe putative HNV antibody-binding epitopes. IMPORTANCE: Hendra virus and Nipah virus (NiV) are lethal, zoonotic Henipaviruses (HNVs) that cause respiratory and neurological clinical features in humans. Since their initial outbreaks in the 1990s, several novel HNVs have been discovered worldwide, including Ghana virus. Additionally, there is serological evidence of zoonotic transmission, lending way to concerns about future outbreaks. HNV infection of cells is mediated by the receptor-binding protein (RBP) and the Fusion protein (F). The work presented here identifies NiV RBP amino acids important for the usage of ephrin-B3 (EFNB3), a receptor highly expressed in neurons and predicted to be important for neurological clinical features caused by NiV. This study also characterizes epitopes recognized by antibodies against divergent HNV RBPs. Together, this sheds insight to amino acids critical for HNV receptor usage and antibody binding, which is valuable for future studies investigating determinants of viral pathogenesis and developing antibody therapies.


Assuntos
Infecções por Henipavirus , Henipavirus , Receptores Virais , Humanos , Aminoácidos/genética , Anticorpos Monoclonais/metabolismo , Proteínas de Transporte/metabolismo , Efrina-B3/genética , Efrina-B3/química , Efrina-B3/metabolismo , Epitopos/genética , Epitopos/metabolismo , Gana , Vírus Hendra/metabolismo , Henipavirus/classificação , Henipavirus/genética , Henipavirus/metabolismo , Mutagênese , Vírus Nipah/metabolismo , Proteínas do Envelope Viral/genética , Internalização do Vírus , Receptores Virais/metabolismo
3.
Viruses ; 16(2)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38399971

RESUMO

Henipaviruses are a genus of emerging pathogens that includes the highly virulent Nipah and Hendra viruses that cause reoccurring outbreaks of disease. Henipaviruses rely on two surface glycoproteins, known as the attachment and fusion proteins, to facilitate entry into host cells. As new and divergent members of the genus have been discovered and structurally characterized, key differences and similarities have been noted. This review surveys the available structural information on Henipavirus glycoproteins, complementing this with information from related biophysical and structural studies of the broader Paramyxoviridae family of which Henipaviruses are members. The process of viral entry is a primary focus for vaccine and drug development, and this review aims to identify critical knowledge gaps in our understanding of the mechanisms that drive Henipavirus fusion.


Assuntos
Vírus Hendra , Infecções por Henipavirus , Henipavirus , Vírus Nipah , Humanos , Infecções por Henipavirus/epidemiologia , Glicoproteínas/metabolismo
4.
J Virol ; 98(2): e0137223, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38214525

RESUMO

Nipah virus (NiV) and Hendra virus (HeV) are pathogenic paramyxoviruses that cause mild-to-severe disease in humans. As members of the Henipavirus genus, NiV and HeV use an attachment (G) glycoprotein and a class I fusion (F) glycoprotein to invade host cells. The F protein rearranges from a metastable prefusion form to an extended postfusion form to facilitate host cell entry. Prefusion NiV F elicits higher neutralizing antibody titers than postfusion NiV F, indicating that stabilization of prefusion F may aid vaccine development. A combination of amino acid substitutions (L104C/I114C, L172F, and S191P) is known to stabilize NiV F in its prefusion conformation, although the extent to which substitutions transfer to other henipavirus F proteins is not known. Here, we perform biophysical and structural studies to investigate the mechanism of prefusion stabilization in F proteins from three henipaviruses: NiV, HeV, and Langya virus (LayV). Three known stabilizing substitutions from NiV F transfer to HeV F and exert similar structural and functional effects. One engineered disulfide bond, located near the fusion peptide, is sufficient to stabilize the prefusion conformations of both HeV F and LayV F. Although LayV F shares low overall sequence identity with NiV F and HeV F, the region around the fusion peptide exhibits high sequence conservation across all henipaviruses. Our findings indicate that substitutions targeting this site of conformational change might be applicable to prefusion stabilization of other henipavirus F proteins and support the use of NiV as a prototypical pathogen for henipavirus vaccine antigen design.IMPORTANCEPathogenic henipaviruses such as Nipah virus (NiV) and Hendra virus (HeV) cause respiratory symptoms, with severe cases resulting in encephalitis, seizures, and coma. The work described here shows that the NiV and HeV fusion (F) proteins share common structural features with the F protein from an emerging henipavirus, Langya virus (LayV). Sequence alignment alone was sufficient to predict which known prefusion-stabilizing amino acid substitutions from NiV F would stabilize the prefusion conformations of HeV F and LayV F. This work also reveals an unexpected oligomeric interface shared by prefusion HeV F and NiV F. Together, these advances lay a foundation for future antigen design targeting henipavirus F proteins. In this way, Nipah virus can serve as a prototypical pathogen for the development of protective vaccines and monoclonal antibodies to prepare for potential henipavirus outbreaks.


Assuntos
Vírus Hendra , Infecções por Henipavirus , Henipavirus , Vírus Nipah , Proteínas Virais , Humanos , Glicoproteínas/metabolismo , Vírus Hendra/fisiologia , Henipavirus/fisiologia , Vírus Nipah/genética , Vírus Nipah/metabolismo , Peptídeos/metabolismo , Proteínas Virais de Fusão , Proteínas Virais/metabolismo
5.
Viruses ; 15(12)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38140648

RESUMO

Henipaviruses are zoonotic viruses, including some highly pathogenic and capable of serious disease and high fatality rates in both animals and humans. Hendra virus and Nipah virus are the most notable henipaviruses, resulting in significant outbreaks across South Asia, South-East Asia, and Australia. Pteropid fruit bats have been identified as key zoonotic reservoirs; however, the increased discovery of henipaviruses outside the geographic distribution of Pteropid fruit bats and the detection of novel henipa-like viruses in other species such as the shrew, rat, and opossum suggest that Pteropid bats are not the sole reservoir for henipaviruses. In this review, we provide an update on henipavirus spillover events and describe the recent detection of novel unclassified henipaviruses, with a strong focus on the shrew and its emerging role as a key host of henipaviruses.


Assuntos
Quirópteros , Vírus Hendra , Infecções por Henipavirus , Vírus Nipah , Humanos , Animais , Ratos , Infecções por Henipavirus/epidemiologia , Infecções por Henipavirus/veterinária , Musaranhos
6.
Virulence ; 14(1): 2273684, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37948320

RESUMO

Paramyxoviruses are a family of single-stranded negative-sense RNA viruses, many of which are responsible for a range of respiratory and neurological diseases in humans and animals. Among the most notable are the henipaviruses, which include the deadly Nipah (NiV) and Hendra (HeV) viruses, the causative agents of outbreaks of severe disease and high case fatality rates in humans and animals. NiV and HeV are maintained in fruit bat reservoirs primarily in the family Pteropus and spillover into humans directly or by an intermediate amplifying host such as swine or horses. Recently, non-chiropteran associated Langya (LayV), Gamak (GAKV), and Mojiang (MojV) viruses have been discovered with confirmed or suspected ability to cause disease in humans or animals. These viruses are less genetically related to HeV and NiV yet share many features with their better-known counterparts. Recent advances in surveillance of wild animal reservoir viruses have revealed a high number of henipaviral genome sequences distributed across most continents, and mammalian orders previously unknown to harbour henipaviruses. In this review, we summarize the current knowledge on the range of pathogenesis observed for the henipaviruses as well as their replication cycle, epidemiology, genomics, and host responses. We focus on the most pathogenic viruses, including NiV, HeV, LayV, and GAKV, as well as the experimentally non-pathogenic CedV. We also highlight the emerging threats posed by these and potentially other closely related viruses.


Assuntos
Quirópteros , Vírus Hendra , Infecções por Henipavirus , Vírus Nipah , Animais , Humanos , Suínos , Cavalos , Virulência , Infecções por Henipavirus/epidemiologia , Infecções por Henipavirus/veterinária , Vírus Nipah/genética , Vírus Hendra/genética , Surtos de Doenças
7.
J Virol ; 97(11): e0062123, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37931130

RESUMO

IMPORTANCE: Ephrin-B2 (EFNB2) is a ligand for six Eph receptors in humans and regulates multiple cell developmental and signaling processes. It also functions as the cell entry receptor for Nipah virus and Hendra virus, zoonotic viruses that can cause respiratory and/or neurological symptoms in humans with high mortality. Here, we investigate the sequence basis of EFNB2 specificity for binding the Nipah virus attachment G glycoprotein over Eph receptors. We then use this information to engineer EFNB2 as a soluble decoy receptor that specifically binds the attachment glycoproteins of the Nipah virus and other related henipaviruses to neutralize infection. These findings further mechanistic understanding of protein selectivity and may facilitate the development of diagnostics or therapeutics against henipavirus infection.


Assuntos
Efrina-B2 , Vírus Hendra , Infecções por Henipavirus , Vírus Nipah , Proteínas Virais , Humanos , Efrina-B2/genética , Efrina-B2/metabolismo , Glicoproteínas/metabolismo , Ligantes , Proteínas Virais/metabolismo
8.
Viruses ; 15(10)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37896758

RESUMO

Hendra virus (HeV) and Nipah virus (NiV) are zoonotic paramyxoviruses in the genus Henipavirus (HNV) that emerged nearly thirty years ago. Outbreaks of HeV and NiV have led to severe respiratory disease and encephalitis in humans and animals characterized by a high mortality rate. Despite the grave threat HNVs pose to public health and global biosecurity, no approved medical countermeasures for human use currently exist against HeV or NiV. To develop candidate vaccines and therapeutics and advance the field's understanding of HNV pathogenesis, animal models of HeV and NiV have been instrumental and remain indispensable. Various species, including rodents, ferrets, and nonhuman primates (NHPs), have been employed for HNV investigations. Among these, NHPs have demonstrated the closest resemblance to human HNV disease, although other animal models replicate some key disease features. Here, we provide a comprehensive review of the currently available animal models (mice, hamsters, guinea pigs, ferrets, cats, dogs, nonhuman primates, horses, and swine) to support HNV research. We also discuss the strengths and limitations of each model for conducting pathogenesis and transmission studies on HeV and NiV and for the evaluation of medical countermeasures.


Assuntos
Vírus Hendra , Infecções por Henipavirus , Vírus Nipah , Cricetinae , Animais , Humanos , Cobaias , Cavalos , Camundongos , Cães , Furões , Modelos Animais de Doenças , Primatas
9.
Viruses ; 15(10)2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37896825

RESUMO

Henipaviruses are single-stranded RNA viruses that have been shown to be virulent in several species, including humans, pigs, horses, and rodents. Isolated nearly 30 years ago, these viruses have been shown to be of particular concern to public health, as at least two members (Nipah and Hendra viruses) are highly virulent, as well as zoonotic, and are thus classified as BSL4 pathogens. Although only 5 members of this genus have been isolated and characterized, metagenomics analysis using animal fluids and tissues has demonstrated the existence of other novel henipaviruses, suggesting a far greater degree of phylogenetic diversity than is currently known. Using a variety of molecular biology techniques, it has been shown that these viruses exhibit varying degrees of tropism on a species, organ/tissue, and cellular level. This review will attempt to provide a general overview of our current understanding of henipaviruses, with a particular emphasis on viral tropism.


Assuntos
Vírus Hendra , Infecções por Henipavirus , Vírus Nipah , Humanos , Animais , Cavalos , Suínos , Filogenia , Tropismo Viral , Tropismo
10.
Front Cell Infect Microbiol ; 13: 1180344, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37577376

RESUMO

Nipah virus (NiV) and Hendra virus (HeV) are newly emerging dangerous zoonotic pathogens of the Henipavirus genus of the Paramyxoviridae family. NiV and HeV (HNVs) which are transmitted by bats cause acute respiratory disease and fatal encephalitis in humans. To date, as there is a lack of antiviral drugs or effective antiviral therapies, the development of vaccines against those two viruses is of primary importance, and the immunogen design is crucial to the success of vaccines. In this study, the full-length protein (G), the ectodomain (Ge) and the head domain (Gs) of NiV attachment glycoprotein were delivered by the replication-defective type 5 adenovirus vector (Ad5) respectively, and the recombinant Ad5-NiV vaccine candidates (Ad5-NiVG, Ad5-NiVGe and Ad5-NiVGs) were constructed and their immunogenicity were evaluated in mice. The results showed that all the vaccine candidates stimulated specific humoral and cellular immune responses efficiently and rapidly against both NiV and HeV, and the Ad5-NiVGe elicited the strongest immune responses after a single-dose immunization. Furthermore, the potent conserved T-cell epitope DTLYFPAVGFL shared by NiV and HeV was identified in the study, which may provide valid information on the mechanism of HNVs-specific cellular immunity. In summary, this study demonstrates that the Ad5-NiVGe could be a potent vaccine candidate against HNVs by inducing robust humoral and cellular immune responses.


Assuntos
Vírus Hendra , Vírus Nipah , Humanos , Animais , Camundongos , Vírus Hendra/fisiologia , Vírus Nipah/genética , Vírus Nipah/metabolismo , Ligação Viral , Glicoproteínas/genética , Glicoproteínas/metabolismo , Vacinas Sintéticas , Imunidade Celular , Adenoviridae/genética
11.
Methods Mol Biol ; 2682: 159-173, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37610581

RESUMO

Hendra and Nipah viruses are henipaviruses that have caused lethal human disease in Australia and Malaysia, Bangladesh, India, and the Philippines, respectively. These viruses are considered Category C pathogens by the US Centers for Disease Control. Nipah virus was recently placed on the World Health Organization Research and Development Blueprint Roadmaps for vaccine and therapeutic development. Given the infrequent and unpredictable nature of henipavirus outbreaks licensure of vaccines and therapeutics will likely require an animal model to demonstrate protective efficacy against henipavirus disease. Studies have shown that nonhuman primates are the most accurate model of human henipavirus disease and would be an important component of any application for licensure of a vaccine or antiviral drug under the US FDA Animal Rule. Nonhuman primate model selection and dosing are discussed regarding vaccine and therapeutic studies against henipaviruses.


Assuntos
Vírus Hendra , Animais , Humanos , Antivirais/farmacologia , Austrália , Surtos de Doenças , Primatas
12.
Viruses ; 15(6)2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37376602

RESUMO

Nipah virus (NiV) and Hendra virus (HeV) are highly pathogenic species from the Henipavirus genus within the paramyxovirus family and are harbored by Pteropus Flying Fox species. Henipaviruses cause severe respiratory disease, neural symptoms, and encephalitis in various animals and humans, with human mortality rates exceeding 70% in some NiV outbreaks. The henipavirus matrix protein (M), which drives viral assembly and budding of the virion, also performs non-structural functions as a type I interferon antagonist. Interestingly, M also undergoes nuclear trafficking that mediates critical monoubiquitination for downstream cell sorting, membrane association, and budding processes. Based on the NiV and HeV M X-ray crystal structures and cell-based assays, M possesses a putative monopartite nuclear localization signal (NLS) (residues 82KRKKIR87; NLS1 HeV), positioned on an exposed flexible loop and typical of how many NLSs bind importin alpha (IMPα), and a putative bipartite NLS (244RR-10X-KRK258; NLS2 HeV), positioned within an α-helix that is far less typical. Here, we employed X-ray crystallography to determine the binding interface of these M NLSs and IMPα. The interaction of both NLS peptides with IMPα was established, with NLS1 binding the IMPα major binding site, and NLS2 binding as a non-classical NLS to the minor site. Co-immunoprecipitation (co-IP) and immunofluorescence assays (IFA) confirm the critical role of NLS2, and specifically K258. Additionally, localization studies demonstrated a supportive role for NLS1 in M nuclear localization. These studies provide additional insight into the critical mechanisms of M nucleocytoplasmic transport, the study of which can provide a greater understanding of viral pathogenesis and uncover a potential target for novel therapeutics for henipaviral diseases.


Assuntos
Vírus Hendra , Infecções por Henipavirus , Vírus Nipah , Animais , Humanos , Sinais de Localização Nuclear/metabolismo , Transporte Ativo do Núcleo Celular , alfa Carioferinas/metabolismo , Ligação Proteica
13.
Viruses ; 15(5)2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37243163

RESUMO

The henipaviruses, Nipah virus (NiV), and Hendra virus (HeV) can cause fatal diseases in humans and animals, whereas Cedar virus is a nonpathogenic henipavirus. Here, using a recombinant Cedar virus (rCedV) reverse genetics platform, the fusion (F) and attachment (G) glycoprotein genes of rCedV were replaced with those of NiV-Bangladesh (NiV-B) or HeV, generating replication-competent chimeric viruses (rCedV-NiV-B and rCedV-HeV), both with and without green fluorescent protein (GFP) or luciferase protein genes. The rCedV chimeras induced a Type I interferon response and utilized only ephrin-B2 and ephrin-B3 as entry receptors compared to rCedV. The neutralizing potencies of well-characterized cross-reactive NiV/HeV F and G specific monoclonal antibodies against rCedV-NiV-B-GFP and rCedV-HeV-GFP highly correlated with measurements obtained using authentic NiV-B and HeV when tested in parallel by plaque reduction neutralization tests (PRNT). A rapid, high-throughput, and quantitative fluorescence reduction neutralization test (FRNT) using the GFP-encoding chimeras was established, and monoclonal antibody neutralization data derived by FRNT highly correlated with data derived by PRNT. The FRNT assay could also measure serum neutralization titers from henipavirus G glycoprotein immunized animals. These rCedV chimeras are an authentic henipavirus-based surrogate neutralization assay that is rapid, cost-effective, and can be utilized outside high containment.


Assuntos
Vírus Hendra , Infecções por Henipavirus , Vírus Nipah , Humanos , Animais , Proteínas do Envelope Viral/genética , Vírus Hendra/genética , Vírus Nipah/genética , Glicoproteínas/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo
14.
Adv Exp Med Biol ; 1407: 175-190, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36920697

RESUMO

The genus Henipavirus (HNV) includes two virulent infectious viruses, Nipah virus (NiV) and Hendra virus (HeV), which are the focus of considerable public health research efforts and have been classified as priority infectious diseases by the World Health Organization. Both viruses are high risk and should be handled in biosafety level 4 laboratories. Pseudotyped viruses containing the envelope proteins of HNV viruses have the same envelope protein structure as the authentic viruses; thus, they can mimic the receptor-binding and membrane fusion processes of authentic viruses with host cells and can be handled in biosafety level 2 laboratories. These characteristics enable pseudotyped viruses to be widely used in studies of viral infection mechanisms (packaging, budding, virus attachment, membrane fusion, viral entry, and glycosylation), inhibitory drug screening assays, and monoclonal antibody neutralization characteristics. This review will provide an overview of the progress of research concerning pseudotyped virus packaging systems for NiV and HeV.


Assuntos
Vírus Hendra , Vírus Nipah , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Pseudotipagem Viral , Vírus Hendra/genética , Vírus Hendra/metabolismo , Vírus Nipah/genética , Vírus Nipah/metabolismo , Internalização do Vírus
15.
Vet Clin North Am Equine Pract ; 39(1): 89-98, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36737284

RESUMO

Hendra virus (HeV) emerged as a zoonotic pathogen in the 1990s, causing low morbidity but high mortality in humans and horses. Pteropid bats are the natural reservoir of HeV and other important zoonotic viruses such as Nipah and Ebola viruses. Equivac HeV, manufactured by Zoetis (Parkville, Victoria, Australia), is the only commercially available vaccine for horses. There is no commercial vaccine for humans. The epidemiology, clinical features, pathology, diagnosis, management, and prevention of HeV will be reviewed.


Assuntos
Quirópteros , Vírus Hendra , Infecções por Henipavirus , Doenças dos Cavalos , Vacinas , Humanos , Animais , Cavalos , Biosseguridade , Doenças dos Cavalos/prevenção & controle , Vacinação/veterinária , Infecções por Henipavirus/epidemiologia , Infecções por Henipavirus/veterinária
16.
Ecol Lett ; 26(1): 23-36, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36310377

RESUMO

The ecological conditions experienced by wildlife reservoirs affect infection dynamics and thus the distribution of pathogen excreted into the environment. This spatial and temporal distribution of shed pathogen has been hypothesised to shape risks of zoonotic spillover. However, few systems have data on both long-term ecological conditions and pathogen excretion to advance mechanistic understanding and test environmental drivers of spillover risk. We here analyse three years of Hendra virus data from nine Australian flying fox roosts with covariates derived from long-term studies of bat ecology. We show that the magnitude of winter pulses of viral excretion, previously considered idiosyncratic, are most pronounced after recent food shortages and in bat populations displaced to novel habitats. We further show that cumulative pathogen excretion over time is shaped by bat ecology and positively predicts spillover frequency. Our work emphasises the role of reservoir host ecology in shaping pathogen excretion and provides a new approach to estimate spillover risk.


Assuntos
Quirópteros , Vírus Hendra , Animais , Austrália , Estações do Ano
17.
Traffic ; 24(3): 146-157, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36479968

RESUMO

The nucleolus is a common target of viruses and viral proteins, but for many viruses the functional outcomes and significance of this targeting remains unresolved. Recently, the first intranucleolar function of a protein of a cytoplasmically-replicating negative-sense RNA virus (NSV) was identified, with the finding that the matrix (M) protein of Hendra virus (HeV) (genus Henipavirus, family Paramyxoviridae) interacts with Treacle protein within nucleolar subcompartments and mimics a cellular mechanism of the nucleolar DNA-damage response (DDR) to suppress ribosomal RNA (rRNA) synthesis. Whether other viruses utilise this mechanism has not been examined. We report that sub-nucleolar Treacle targeting and modulation is conserved between M proteins of multiple Henipaviruses, including Nipah virus and other potentially zoonotic viruses. Furthermore, this function is also evident for P3 protein of rabies virus, the prototype virus of a different RNA virus family (Rhabdoviridae), with Treacle depletion in cells also found to impact virus production. These data indicate that unrelated proteins of viruses from different families have independently developed nucleolar/Treacle targeting function, but that modulation of Treacle has distinct effects on infection. Thus, subversion of Treacle may be an important process in infection by diverse NSVs, and so could provide novel targets for antiviral approaches with broad specificity.


Assuntos
Vírus Hendra , Lyssavirus , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , RNA Ribossômico , Lyssavirus/genética , Lyssavirus/metabolismo , Ribossomos/metabolismo , Vírus Hendra/genética , Vírus Hendra/metabolismo , Fatores de Transcrição
18.
Nature ; 613(7943): 340-344, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36384167

RESUMO

During recent decades, pathogens that originated in bats have become an increasing public health concern. A major challenge is to identify how those pathogens spill over into human populations to generate a pandemic threat1. Many correlational studies associate spillover with changes in land use or other anthropogenic stressors2,3, although the mechanisms underlying the observed correlations have not been identified4. One limitation is the lack of spatially and temporally explicit data on multiple spillovers, and on the connections among spillovers, reservoir host ecology and behaviour and viral dynamics. We present 25 years of data on land-use change, bat behaviour and spillover of Hendra virus from Pteropodid bats to horses in subtropical Australia. These data show that bats are responding to environmental change by persistently adopting behaviours that were previously transient responses to nutritional stress. Interactions between land-use change and climate now lead to persistent bat residency in agricultural areas, where periodic food shortages drive clusters of spillovers. Pulses of winter flowering of trees in remnant forests appeared to prevent spillover. We developed integrative Bayesian network models based on these phenomena that accurately predicted the presence or absence of clusters of spillovers in each of the 25 years. Our long-term study identifies the mechanistic connections between habitat loss, climate and increased spillover risk. It provides a framework for examining causes of bat virus spillover and for developing ecological countermeasures to prevent pandemics.


Assuntos
Quirópteros , Ecologia , Ecossistema , Vírus Hendra , Cavalos , Animais , Humanos , Austrália , Teorema de Bayes , Quirópteros/virologia , Clima , Cavalos/virologia , Saúde Pública , Vírus Hendra/isolamento & purificação , Recursos Naturais , Agricultura , Florestas , Abastecimento de Alimentos , Pandemias/prevenção & controle , Pandemias/veterinária
19.
Viruses ; 14(10)2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36298723

RESUMO

The viral genus Henipavirus includes two highly virulent zoonotic viruses of serious public health concern. Hendra henipavirus and Nipah henipavirus outbreaks are restricted to Australia and Southeast Asia, respectively. The Henipavirus genus comprises mostly bat-borne viruses, but exceptions have already been described as novel viruses with rodents and shrews as reservoir animals. In the Americas, scarce evidence supports the circulation of these viruses. In this communication, we report a novel henipa-like virus from opossums (Marmosa demerarae) from a forest fragment area in the Peixe-Boi municipality, Brazil, after which the virus was named the Peixe-Boi virus (PBV). The application of next-generation sequencing and metagenomic approach led us to discover the original evidence of a henipa-like virus genome in Brazil and South America and the original description of a henipa-like virus in marsupial species. These findings emphasize the importance of further studies to characterize PBV and clarify its ecology, impact on public health, and its relationship with didelphid marsupials and henipaviruses.


Assuntos
Quirópteros , Vírus Hendra , Infecções por Henipavirus , Vírus Nipah , Animais , Infecções por Henipavirus/epidemiologia , Brasil/epidemiologia , Genômica
20.
Geroscience ; 44(5): 2447-2459, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36219280

RESUMO

Nipah virus (NiV) and Hendra virus (HeV) are highly pathogenic zoonotic viruses of the genus Henipavirus, family Paramyxoviridae that cause severe disease outbreaks in humans and also can infect and cause lethal disease across a broad range of mammalian species. Another related Henipavirus has been very recently identified in China in febrile patients with pneumonia, the Langya virus (LayV) of probable animal origin in shrews. NiV and HeV were first identified as the causative agents of severe respiratory and encephalitic disease in the 1990s across Australia and Southern Asia with mortality rates reaching up to 90%. They are responsible for rare and sporadic outbreaks with no approved treatment modalities. NiV and HeV have wide cellular tropism that contributes to their high pathogenicity. From their natural hosts bats, different scenarios propitiate their spillover to pigs, horses, and humans. Henipavirus-associated respiratory disease arises from vasculitis and respiratory epithelial cell infection while the neuropathogenesis of Henipavirus infection is still not completely understood but appears to arise from dual mechanisms of vascular disease and direct parenchymal brain infection. This brief review offers an overview of direct and indirect mechanisms of HeV and NiV pathogenicity and their interaction with the human immune system, as well as the main viral strategies to subvert such responses.


Assuntos
Vírus Hendra , Infecções por Henipavirus , Vírus Nipah , Humanos , Animais , Suínos , Cavalos , Saúde Pública , Infecções por Henipavirus/epidemiologia , Infecções por Henipavirus/veterinária , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...